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Summary. We summarize the results of a mathematical study of  the time- 
dependent Born-Oppenheimer approximation near crossings of two non- 
degenerate electron energy surfaces. We illustrate our techniques by relatively 
simple examples that contain the essential ingredients of  the general cases. 
We discuss all generic types of  crossings of  two non-degenerate electron 
energy surfaces. 
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1. Introduction 

The familiar time-dependent Born-Oppenheimer approximation provides a use- 
ful description of  molecular dynamics. One chooses a simple isolated electron 
energy surface and propagates the nuclei semiclassically in the effective potential 
generated by this surface. The electronic wave function propagates with an 
adiabatic dependence on the nuclear configurations. 

This approximation breaks down as the nuclei approach a configuration at 
which the chosen electron energy surface fails to remain isolated from the rest of  
the electronic energy spectrum. The simplest way this can happen is if two such 
electron energy surfaces cross one another. In this paper we discuss how the 
approximation can be adapted to accommodate such crossings. 

We have mathematical proofs that in the large nuclear mass limit, our 
approximations are asymptotic to solutions to the full Schrrdinger equation in 
very general situations. These proofs are technically very complicated, and the 
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technicalities obscure the basic ideas that are involved. We plan to publish them 
in the mathematical physics literature. 

The goal of the present paper is to present the basic ideas with as little 
technical complication as possible. For this reason, we analyze specific simple 
examples, rather than study the general cases. These examples have been chosen 
to illustrate all the principal ideas without burdening the reader with lengthy 
calculations. 

In all of our examples, the electronic Hilbert space is two dimensional, and 
the electronic Hamiltonians are 2 x 2 matrices. To the order of approximation 
that we calculate, the behavior produced in these examples is the same as that 
produced in the infinite dimensional case with Hamiltonians that are differential 
operators. In the general case, there are adiabatic corrections that involve states 
other than the two whose energies cross. As in general adiabatic situations [1, 2], 
these corrections give rise to terms that are of second order in the expansion 
parameter we use. The terms we present in this paper are of at most first order. 
Thus, the relevance of our results to interesting systems is not affected by the 
non-existence of general diabatic bases [3-6]. 

In the general case of the crossing of two non-degenerate electronic states 
• ~¢(x) and ~ ( x ) ,  the eigenvectors may be discontinuous near the crossing. 
However, one can always choose two orthonormal vectors ~1 (x) and ~/i2(x ) that 
depend smoothly on the nuclear configuration x, and that span the same subspace 
as the pair ~¢(x) and ~ ( x ) .  As a consequence of the adiabatic aspects of the 
problem indicated in the previous paragraph, the first order Born-Oppenheimer 
approximation depends only on the following four matrix elements of the electron 
Hamiltonian: 

(~(x), h(x)~(x)) (~,(x), h(x)~2(x)) 
(~2(x), h(x)~,(x)) (~2(x), h(x)~2(x)). 

The other matrix elements are only relevant in the higher orders of approximation. 
The wave functions we study are all highly localized in the nuclear configura- 

tion space near some classical path a(t). As a result of this localization, the 
standard time-dependent Born-Oppenheimer approximation is valid unless a(t) is 
very close to the crossing configuration (the larger the nuclear masses, the closer 
a(t) can get before the standard approximation breaks down). For our low order 
Born-Oppenheimer results, when a(t) is near a general crossing, one may 
approximate the four matrix elements by their first order Taylor series approxi- 
mations. The higher order Taylor series terms for the matrix elements do not affect 
the low order Born-Oppenheimer propagation. Thus, for a low order Born-Op- 
penheimer approximation, the critical aspects of a level crossing (even in the 
realistic infinite dimensional case) are determined by the first order Taylor series 
approximations to the four relevant electron Hamiltonian matrix elements. 

The examples presented in this paper give rise to the same crossing phenomena 
as the general cases, because their first order Taylor series coefficients at the 
crossing are representative of the generic cases. What happens at a crossing 
depends on the local behavior of the four electron Hamiltonian matrix elements, 
and our examples contain generic local behavior. 
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The initial states we have chosen in this paper all are standard time-dependent 
Born-Oppenheimer states that are associated with one arbitrary non- 
degenerate electron energy surface. They have Gaussian dependence on the 
nuclear configurations. Our techniques apply if the Gaussian ~o(A, B, e z, a, 7, x) 
is replaced by any of the functions (~k(A, B, E 2, a, rl, x) of Sect. 2. Since the 
Schrtdinger equation is linear, the superposition principle holds and one may take 
finite linear combinations of the resulting approximate solutions. However, the 
error estimates are not uniform in the multi:index k, and we have proved our 
results only for initial conditions that are finite linear combinations of the ~bk. One 
should be warned that the different initial conditions give rise to different 
probabilities for the final state to end up on one or the other electron energy 
surfaces. The probabilities reported in Sects. 4 and 5 are valid only for the specific 
initial states we have chosen. To compute what happens for the other initial states, 
one must go through the procedure that we outline in Sects. 3-5  for the specific 
state of interest. The calculations are straightforward, but messy and lengthy. 

For electron Hamiltonians with analytic dependence on the nuclear configu- 
rations, there are four generic types of electronic energy level crossings. The 
various types arise from different symmetry situations [7, 8]. In this paper, we 
discuss three of these situations. The case we omit concerns Hamiltonians that 
commute with an anti-unitary operator whose square is - 1 .  In systems with 
non-trivial spin effects, but no external magnetic fields, the time reversal operator 
is such an anti-unitary operator if the number of electrons is odd. In such systems 
all states are degenerate, and one expects non-trivial dynamical considerations to 
play a role, even away from a crossing [9]. Molecules with an odd number of 
electrons exhibit this Kramer's degeneracy [7]. 

The three types we study give rise to dramatically different phenomena as the 
nuclear configurations go through the crossing. It is convenient to label the three 
types of crossings by the codimensions of the submanifolds on which the two 
electron energy surfaces are in contact with one another. The codimension reflects 
the number of nuclear coordinates that typically must be adjusted in order to 
reach the crossing. The cases we study have codimensions 1, 2, and 3. In the 
Kramer's doublet situation that we do not study, generic crossings have codimen- 
sion five [7-9]. 

Codimension 1 crossings are the most elementary. They generically do not 
occur unless the electron Hamiltonian has a symmetry and the two surfaces 
involved in the crossing are associated with different symmetry classes. In this 
case, the electron energies and electron wave functions can be chosen to be 
analytic functions of the nuclear configurations. Except in degenerate situations, 
the separation between t h e  two electron energy surfaces vanishes linearly as 
nuclear configurations approach the crossing. 

To illustrate our techniques for a codimension 1 crossing, we have chosen the 
following example: The electron Hilbert space is the two dimensional complex 
space C 2, and the nuclear configurations are described by a single real parameter, 
x ~ R. The electron Hamiltonian is 

= F--X sin2(x) x sin(x) cos(x)] 
hi(x) [_x sin(x) cos(x) - x  cos2(x) 1" (1.1) 
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The electron energy levels are E~e(x)= 0 and Ea~(x)= - x .  The corresponding 
eigenvectors are 

//cos(x)'~ = / / -  sin(x)'~ 
¢'.~(x) = \s in(x) / '  and 4,~(x) \ cos(x) ,/" 

If the nuclear mass is E-4, then the relevant Schr6dinger equation is 

iE2 a~b E4 OzlP 
Ot = 2 3x 2 + h, (x)~, (1.2) 

where q(x, t) has two components. One should note that the time scale has been 
chosen as in the usual time-dependent Born-Oppenheimer approximation [ 10], so 
that the nuclear motion has a semiclassical limit that is non-trivial as E tends to 
0. 

In Sect. 3 we choose a specific traditional Born-Oppenheimer state associated 
with the E~, surface that is localized in x near a negative value a, and has 
momentum localized near a positive value r/. We propagate this state through the 
crossing. After passing through the crossing, the wave function is a superposition 
of two traditional Born-Oppenheimer states: one for the Ed  surface, and one for 
the E~ surface. For small ~, the amplitude of  the E~, component is 1 + o(0, and 
the amplitude of the E~ component is (2nr/) 1/2£ "l- O(¢). 

The zeroth order Born-Oppenheimer term is not significantly affected by a 
codimension 1 crossing. In a temporal boundary layer of duration O(0 when the 
zeroth order term is passing through the crossing, the Ea component is generated 
as a first order correction. We have not calculated higher order corrections, but 
we would expect them to be very complicated and have orders e n(k) 1ogm(k)(E). 

Codimension 2 crossings are generic if the electron Hamiltonian commutes 
with a conjugation (i.e., an anti-unitary operator whose square is the identity) 
and either no symmetries are involved or the relevant electronic wave functions 
belong to the same symmetry class. (For finite dimensional Hamiltonians, this 
means that in addition to being self-adjoint, the Hamiltonian is unitarily 
equivalent to a real symmetric matrix.) This situation is probably the one of 
greatest interest in quantum chemistry. For example, if there is no external 
magnetic field and either spin effects are ignored or there are an even number of 
electrons, then the Hamiltonian commutes with the time reversal. In this 
situation time reversal is a conjugation [7]. 

In generic codimension 2 crossings, the electron energy levels depend contin- 
uously on the nuclear configurations, but are not differentiable. In addition, the 
associated electron eigenfunctions are not continuous functions of the nuclear 
configurations near the crossing. Interesting phenomena, such as Berry phases 
result from the structure of these discontinuities [ 11-13]. 

The canonical example of a codimension 2 crossing is the following: The 
electron Hilbert space is the two dimensional complex space C 2, and the nuclear 
configurations are described by a two real parameters, (x~, x2) e R 2. The electron 
Hamiltonian is 

Ix '  x2 1 (1.3) h 2 ( x l , x 2 )  = X2 - - X  1 " 
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The electron energy levels are E~(x)  = (x 2 + x2) 1/2 and E~(x) = - ( x  2 +x22) 1/2. 
We choose the corresponding eigenvectors to be 

(cos(0/2)~ ( -  sin(0/2)~ 
q ~ ( x )  = \s in(O/2)] '  and *~(x) = \ cos(0/2) ] '  

where 0 = tan-l(x2/xm) is the usual polar coordinate. We choose the branch of 
the inverse tangent so that - -x /2  ~< 0 < 3n/2. One can multiply our choice of 
eigenvectors by odd powers of the phase factor e i°/2 to avoid having a cut. We 
have not done so, because we want to work with real eigenvectors whenever 
possible. The advantage of real eigenvectors is that if ~(x) is real and normal- 
ized, then (#(x), ~/• V#(x ) )  = 0 for any vector ~/. If  #(x) were not real, then this 
equation could fail for almost all choices of r/. Although one could use complex 
eigenvectors, one would not be able to use formulas from Section 3 of [10] 
without making appropriate alterations. 

One might expect the presence of a cut would cause difficulties, but it does 
not. The nuclear wave functions we use are localized near a point a(0, and we 
only use the eigenfunctions when a(t) is sufficiently far from the crossing. 
Whenever we use ~ , ( x )  or ~ ( x )  in our analysis, they always appear multiplied 
by a function that is zero in a neighborhood of the cut. Of course, the exact 
solution to the SchrSdinger equation is not zero in the neighborhood of the cut, 
even though the approximate one is. The exact solution is, however, sufficiently 
small in the neighborhood so that the error estimates still hold. When a(t) is near 
the crossing, the wave function is not small near the cut. In that situation we use 
different techniques that make no reference whatsoever to the electron eigenfunc- 
tions. Since the eigenfunctions are not used, the cut is irrelevant. The technique 
of asymptotic matching is used to connect the various solutions to one another 
to obtain results for the whole time interval of interest. The matching uniquely 
determines a single valued wave function, and there is no ambiguity concerning 
the sign or phase of the wave function at any stage. 

The matching process is the same one used in standard WKB theory near a 
turning point. In the interior of the classically forbidden region and in the 
interior of the classically allowed region, outer solutions are valid. They involve 
exponentials times factors that blow up near the turning point. Near the turning 
point, one rescales the problem and finds inner solutions that are valid approxi- 
mations. They involve Airy functions. Asymptotic matching connects these 
solutions to one another. Our analysis is completely analogous. 

The Schrrdinger equation we study in the codimension 2 case is 

= 2 ~X12 "~ ~2X22 ) -]- h2(Xl' x2)~]' (1.4) O--~- 

where $(Xl, x2, t) has two components. 
In Section 4 we choose an initial Born-Oppenheimer state associated with the 

E~, energy level that is localized near the point (a, 0) and localized in momentum 
near (r/, 0), where a < 0 and q > 0. After we have propagated the state through 
the crossing, then to leading order, the wave function is a superposition of two 
Born-Oppenheimer components: one for the E~, surface, and one for the E a 
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surface. The Ea~ component is a traditional Born-Oppenheimer state. The E~, 
component has a slightly greater position uncertainty than the traditional 
Born-Oppenheimer states. 

In contrast to the codimension 1 case, both components have amplitudes that 
are O(1) as E tends to 0. For the specific state we study, the probability of finding 
the system in the E~ state after the crossing is (1 + n/q0)-  1/2+ o(1), where ~/0 is 
the speed at which the nuclei move through the crossing. The probability of 
finding the system in the E~, state is 1 - ( 1  + rc/qo)-l/Z + o(1). Thus, the proba- 
bilities depend critically on the rate at which the system passes through the 
crossing. 

Codimension 3 crossings are generic for general self-adjoint electron Hamil- 
tonians if there are no symmetries or if the relevant electron wave functions 
belong to the same symmetry class. Such systems are not time reversal invariant, 
but occur, for example, when there are external magnetic fields. The analysis 
of a non-degenerate codimension 3 crossing is similar to the codimension 2 
case, but is complicated by the involvement of another degree of freedom for 
the nuclei and some nontrivial topology involving the choice of electronic 
eigenfunctions. 

We illustrate the techniques for a codimension 3 crossing by the following 
example: The electron Hilbert space is the two dimensional complex space C 2, 
and the nuclear configurations are described by a three real parameters, 
(Xl, X2, X3) ~ R 3. The electron Hamiltonian is 

h3(x i , X2, X 3 ) = [  X3xl -- ix2 Xl'q-__X3 ix2]_]. (1.5) 

~2±~2~1/2 and E ~ ( x ) =  The electron energy levels are E~(x)=(xE+``2T~3j 
~2 ± ~2~/2 To avoid singularities caused by the topology of the situa- - ( x ~  + . , 2  T ~ 3 J  • 

tion, we make different choices of the eigenvectors, depending on the sign of x3. 
We let 0 and q~ be the usual spherical coordinates with 0 ~< 0 ~< rc and 0 ~< q~ < 2rL 
If  0 ~< 0 ~< ~/2, we choose the eigenvectors to be 

• ~ ( x ) =  e_g~Osin(O/2)], and ~ ( x ) =  cos(O/2) /" 

If  ~/2 < 0 ~ re, we choose the eigenvectors to be 

={ei~° cos(O/2)'~ ( -  sin(0/2) 
• ~(x) \ sin(0/2) ] '  and ¢~(x)  = \ e _ ~ c o s ( 0 / 2 ) ] .  

We will not make use of these eigenvectors near the x3 = 0 plane, so the 
discontinuity will not cause difficulties. Although these eigenvectors are not real, 
they satisfy (~.(x), t? • V~.(x)) = 0 as long as q points along the third coordinate 
axis and x3 # 0. This allows us to use formulas from [ 10] verbatim, since we have 
chosen initial conditions that have q(t) pointing along the x 3 axis. As in the 
codimension 2 case, we will never make use of the eigenfunctions near the cut on 
the x3 = 0 plane. The asymptotic matching procedure uniquely determines single 
valued inner and outgoing outer solutions. There is no phase ambiguity. 
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The Schr6dinger equation we study in the codimension 3 case is: 

iE 2 t~k E4//(~2~/ (~2~/ (~2~/) 
0--~- = - 5  ~-~X2l + ~--~x~ +-~x32_ +h3(x,,x2, x3)~k, (1.6) 

where ~k(xl, x2, x3, t) has two components. 
In Sect. 5 we choose an initial Born-Oppenheimer state associated with the 

E~, energy level that is localized near the point (0,0, a) and localized in 
momentum near (0, 0, g), where a < 0 and g > 0. After passing through the 
crossing, the wave function is again a superposition of two Born-Oppenheimer 
states associated with the E~, and E~ surfaces. As in the codimension 2 case, 
both components have amplitudes that are O(1) as E tends to 0, and the E~, 
component has a somewhat larger spatial uncertainty than traditional Born- 
Oppenheimer states. For the specific state we study, the probability of finding the 
system in the E~ state after the crossing is (1 + tO/0) -1 + o(1), where g0 is the 
speed at which the nuclei move through the crossing. The probability of finding 
the system in the E~, state is 1 - ( 1  +n/g0) 1 +o(1). 

We employ the same basic strategy to approximately solve the Schr6dinger 
equations for the three cases. Before the nuclei encounter the crossing, we use 
previously developed techniques [10] to construct the solutions. These "outer" 
solutions become singular and fail to be accurate as the nuclei get close to the 
crossing. We use the method of matched asymptotic expansions with general 
order functions [ 14] to match these outer solutions to "inner" solutions that are 
valid while the nuclei are actually going through the crossing. After the nuclei are 
away from the crossing, we match the inner solutions to appropriate outer 
solutions. The outer solutions are standard time-dependent Born-Oppenheimer 
solutions. The inner solutions are obtained by rescaling the time variable to 
conform to the physical situation. The crossing of energy surfaces gives rise to a 
new time scale when the nuclei are near the crossing. The inner solutions are 
constructed as functions of the rescaled time s = tiE. The most difficult aspect of 
the rigorous proof involves demonstrating that there are appropriate time 
intervals during which both the outer and inner expansions are valid. 

By examining the inner solutions we observe a Franck-Condon principle. In 
the temporal boundary layer when the inner solutions are valid, the nuclei 
essentially move with constant speed. Their large masses prevent them from 
accelerating significantly during this brief time interval. The electrons, however, 
exhibit complicated dynamics in the temporal boundary layer. 

Born-Oppenheimer approximations have received very little attention from 
mathematicians [10, 15-23], and there are only three mathematical papers 
[10, 18, 21] that consider the time-dependent approximation. Eigenvalue cross- 
ings in the adiabatic approximation have also received very little attention 
[2, 24-30] and only one paper [2] considers adiabatic crossings for systems with 
infinite dimensional Hilbert spaces. As far as the author is aware, the results 
described in the present paper represent the only attempt to construct a rigorous 
general theory for level crossings in the Born-Oppenheimer limit for molecular 
systems. 

In Sects. 3-5 we precisely describe the results for our examples without 
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proofs. The proofs are outlined in the Appendix. The full proofs that handle 
general situations with infinite dimensional electron Hamiltonians will be pub- 
lished in the mathematics literature. 

Remark 1. Although our techniques apply in generic situations, specific details 
depend on the particular situation. Different initial conditions may produce 
different probabilities for transition from one surface to another at a crossing. 

Remark 2. In Sects. 4 and 5, we arbitrarily took initial conditions associated 
with the upper surface. If one were to start with the analogous Gaussian nuclear 
wave functions on the lower surface, the transition probabilities and the qualita- 
tive structure of the solutions would be the same, except for the interchange of 
the ~/'s and ~ 's .  The classical action integrals, positions, momenta, and 
uncertainty matrices would be different, because the roles of the two electron 
energy surfaces before and after the crossings would be reversed. 

Remark 3. The codimension 2 and 3 cases are fundamentally different from the 
codimension 1 case because of the singular structure of the electronic eigenfunc- 
tions associated with the geometric phase. This singular behavior enhances the 
coupling between the two surfaces. As a consequence, both surfaces are involved 
to leading order in the codimension 2 and 3 cases, while only one is involved to 
leading order in the codimension 1 case. 

Remark 4. The temporal and spatial scaling properties of the differential equa- 
tions and initial conditions for molecular systems are much more subtle than one 
might naively expect. The Born-Oppenheimer limit discussed in this paper is the 
distinguished limiting process in which all the various terms of the differential 
equations play significant roles. Other choices of the temporal scaling or spatial 
scaling as E tends to zero may produce different phenomena, However, they tend 
to have less interesting structure because some terms in the equations dominate 
while others become unimportant. 

2. Notation for wave packets 

In Sects. 3-5, we will use special n-dimensional semiclassical wave packets 
[31, 32]. In general cases, much more complicated wave functions are required. 
However, the examples we present have been chosen so that the matrices, A and 
B are always diagonal. This drastically simplifies the formulas. 

We first establish our notation for Gaussian wave functions. 

Definition. Let A and B be diagonal complex n x n matrices with the following 
properties: 

A and B are invertible; 

Re B A - 1 =  ½[(BA-1) + (BA- i ) . ]  is strictly positive definite; 

and (Re BA - i ) - !  = AA*. 
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Let a ~ R n, r/E ~n, and E > 0. We define 

~bo(A, B, E 2, a, r/, x) = n-"/4c-"/ :[det  A] -  i/2 

× e x p { - ( x  - a ) .  BA - I ( x  - a)/2e 2 + itl • (x - a)/ez}. 

Intuitively, this is a semiclassical wave packet in which e 2 plays the role of  h. 
The wave packet is concentrated near position a and has momentum concen- 
trated near ~/. The position and momentum uncertainties in the jth coordinate 
direction are proportional to elAJJl and e IB n 1, respectively [31, 32]. 

In the codimension 2 and 3 cases, Gaussian wave packets are not sufficient 
for the analysis. We also need the following Hermite polynomials times 
Gaussians: 

Definition. Choose A, B, a, and r/ as in the above definition. For  each multi- 
index k = (kl, k2, • • •, kn) of  non-negative integers, we define 

~b~(A, B, E 2, a, ~/, x) = ~bo(A, B, E 2, a,  q, x) 

x f i  2-k, /2ik ."  - ' /2fA'j~k'12~ , , - , 1 4 o l - , ( x - a ) )  
, : ,  " , '  t,a ) ,,k,,o 

For  each fixed choice of ,4, B, a, and q, the functions ~k(a, B, c 2, a, q, x) 
form an orthonormal basis of  wave packets. These wave packets propagate in a 
simple way [31, 32] in the semiclassical limit. All out nuclear wave functions will 
be constructed from superpositions of these functions. 

Warning! If  A and t7 are not diagonal, then the definition above is not the 
proper definition. The natural basis in the general case involves polynomials that 
are much more complicated than products of Hermite polynomials [10, 32]. For  
generic electron energy level surfaces, non-diagonal A's and B's cannot be 
avoided, even if no crossings are present. The evolution equations [10] for these 
uncertainty matrices produce off-diagonal terms in generic situations. The elec- 
tron Hamiltonians for our examples have been chosen to illustrate the principal 
ideas in as simple a context as possible. 

3. Codimension 1 crossings 

In this section, we study particular crossing solutions to Eq. (1.2) modulo errors 
that are o(E =) for some ~ > 1. A simple connection formula that connects the 
solution before the crossing to the solution after the crossing is obtained (see Eq. 
(3.4)). The techniques involved in obtaining these solutions are adaptations of  
the techniques [2] used to handle adiabatic crossings. 

When the nuclear wave function is localized away from the crossing, Eq. 
(1.2) can be solved to arbitrarily high order by traditional Born-Oppenheimer 
solutions [10]. We have chosen one such solution associated with the E~, electron 
energy level, that is moving toward the crossing for - 1 ~ t ~< - c < 0. Up to 
errors that are O(e2), this solution is 

eiS~(t)/,2~)o(A~(t), B~I(t), £2, a~e(t), q~c(t), x ) ~ ( x ) .  (3.1) 
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Here 

and 

a~t(t) = 7ot, 

7 ~ ( t )  = 70, 

S ~ ( t )  = 72t /2 ,  

A ~¢(t) = 1 + it, 

B~C(t) = 1 

are the classical position, classical momentum, classical action, and semiclassical 
uncertainty matrices for the nuclei. 

By carefully estimating the errors, one can prove that (3.1) is a solution to 
equation (1.2) modulo errors that are O(E2-r), on the extended time interval 
- 1 ~< t ~< - CE ~, provided 0 ~< ~ < 1. These extended interval error estimates are 
non-trivial and tedious in general cases. One must insert spatial cut-offs, include 
parts of the second and third order corrections to the wave function, estimate a 
large number of error terms, and then remove the cut-offs. 

Next, we define the inner solution that matches this outer solution. Since the 
inner solution involves the E~ electron energy surface, we need the appropriate 
classical position, momentum, action, and semiclassical uncertainty matrices for 
that surface. They are 

and 

a~(t)  = rlot + t2/2, 

7~( t )  = 7o + t, 

Sa~(t) = 7~t /2  + 7o t2 + t3/3, 

A S ( t )  = 1 + (i + 1/7o)t, 

B~( t )  = 1 - i/7o. 

The derivation of the inner solution also involves rescalings of  the indepen- 
dent variables. We define a rescaled time variable s(O = t/¢ and two rescaled 
position variables y~c(x, t) = (x  - a~) /E  and y ~ ( x ,  t) = (x  - a~) /e .  Since we 
want only one position variable instead of  two, we arbitrarily choose y~, as an 
independent variable, and use y~  = y ~  + (a d - a~)/E = y ~  - Es2/2 only as a 
convenient shorthand notation. 

In the rescaled variables s and y~,, the Schr6dinger equation (1.2) has the 
form 

• d~O t~b _ e2 02@ ~-hl(a~C+cy~)~O. (3.2) 
tE -~s ie7~¢ Oy~ 2 0 y  2 

We make the ansatz that the inner solution has the form 

~O(y~, s) = e is~'/'2 ei"~'Y~ /'f(E, s, y~)q~ d ( a  ~ + e y e )  

+ e is~/'2 ein~Y~/'g(e, s, y ~ ) ~ ( a  ~¢ + e y e ) .  (3.3) 
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We assume the functions f and g have asymptotic expansions 

f(c, s, Ya,) = ~ v. (Of. (s, y~, ) 
n = O  

and 
oo 

g(E, s, = }L v.(Og (s, 
n = O  

where the order functions vj (0 are the arbitrary functions that will be determined 
by matching the outer solutions. 

We substitute the expression (3.3) into Eq. (3.2). In the resulting expression 
we expand all analytic dependence on e in its power series in powers of  e. We 
then equate like powers of E on the two sides of the resulting equation, order by 
order. By matching the incoming outer solution, we learn that Vo(e) = 1, and 
Vl(E) = E. Furthermore, we find 

fo = e-1/2~o(Ad(0), Ba'(0), 1, 0, 0, y~,), 

go = 0, 

is ~2 
f l  = "2 ~ 2  £ -l/2~)o(ad(o)' Bat(O), 1, O, O, y~¢), 

and 
Is + y~/r/o 

gl = - ~/0E-1/2~0(A~(0), B~(0), 1, 0, 0, y~) e-;~or2/2 dr. 
d--oo 

By another wearisome error analysis, this approximate inner solution agrees with 
an exact solution up to O(e 4r'-2) errors for It[ <c  ¢. I f  we choose 3/4<?"  < 1, 
this time interval intersects the interval of validity for the outer solution. In their 
respective intervals of validity, the two solutions agree with exact solutions up to 
o(e) errors, and in the overlap region, the two solutions agree with one another 
to first order. So, the matching is justified. By similar rigorous analysis, we can 
explicitly write down the positive time first order outer solution that matches the 
inner solution. It is valid for E r < t and is given by the formula 

eiS q°/ 2 o(a ( t), E ( O, ( t), x )¢  ( x) 

+ e( - 1 + i)nl/2rl 1/2 eiS~(°/~2q~o(A~(t), B~(t),  e 2, aS(t), tlai(t), x ) ~ ( x ) .  (3.4) 

Remark  1. Note that in our example, 

( ~ ( x ) ,  d ~ ,  \ (x ) )  = 1 -dT-x 

for all x. In more general situations, the order e connection coefficient contains 
the additional factor 

if the crossing occurs at x = O. 
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Remark 2. The inner solution involves two time scales, s and t. By doing a 
multiple scales expansion that involves both time scales, one obtains a more 
aesthetic form for the approximate inner solution: 

fo = £ -l/2q~o(ASl(t), B~(t), 1, O, O, y~,), 

go = O, 

fl=0, 

and 

f s ~y~¢ /rio 
gl = --floe -1/2C~o(A~(t), B~(t), 1, O, O, y~) e-i"°r2/2 dr. 

Of course, for times when the inner solution is a valid approximation, this 
approximate solution is first order equivalent to the one presented above. 

4. Codimension 2 crossings 

In this section, we study particular crossing solutions to Eq. (1.4) modulo errors 
that are o(1). In contrast to the codimension 1 case, codimension 2 crossings 
drastically alter the zeroth order wave functions. Although the connection 
formulas are much more complicated, the probabilities for ending up on one 
surface or the other remain relatively simple in the leading order approximation. 

When the nuclear wave function is localized away from the crossing, Eq. 
(1.4) can be solved to arbitrarily high order by traditional Born-Oppenheimer 
solutions [10]. We have chosen one such solution associated with the E~, electron 
energy level, that is moving toward the crossing for -t t0 <~ t ~< - e  < 0. Up to 
errors that are O(cl), this solution is 

F (! x - a"(t)l  -~i--g -] eiS~'(°/~2~o(A~(t), B~C(t), e 2, a~*(t), q~c(t), x ) ~ ( x )  (4.1) 

where F is a smooth cut off function that takes the value 1 when its argument is 
less than one and takes the value 0 when its argument is greater than 2. The 
number 6 > 0 will be chosen later to be very small. In addition, 

a~C(t) = (q°t ; t2/2), 

(.o0+t) 
S~'(t) = 11~t/2 + qo t2 + t3/3, 

A ~ ( t ) =  1 +it,  

O~(t) = 1, 

A~(t)  = A~(t)  = BE(t  ) = B~(t) =0 ,  
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i 3 ) t  z t2 l°glt[ 2~/o 2r/20 tl°gltl+(i_l]t  +o(t 
AM(t  ) = 1 + 11o \ 11oj 21120 

and 

B ~ ( t ) =  /log[t[ itlog[t[ ( 1  5 i )  
t- 1 ~- + t + O(t 2) 

110 1120 

are the classical position, classical momentum, classical action, and semiclassical 
uncertainty matrices for the nuclei. The functions A22 and B22 are obtained by 
solving a system of ordinary differential equations by the classical power series 
method of Frobenius. The logarithms arise from a regular singular point at t = 0 
in the equations. We have exhibited all logarithms that occur in the formulas. 
The O(t 3) and O(t 2) terms in the formulas represent errors that are analytic 
functions of t. 

By carefully estimating the errors, one can prove that (4.1) is a solution to 
Eq. (1.4) modulo errors that are O(el-v), on the extended time interval 
- 1 <<. t <~ - Ce ~, provided 0 ~< ~ < 1 - 6. These extended interval error estimates 
are tedious as in the codimension 1 case. One must include part of the second 
order correction to the wave function and estimate a large number of error 
terms. One should note that the presence of the cut off function F in (4.1) causes 
the wave function to be zero on the x2 axis for t < - C e  ~ for small e. Thus, the 
expression (4.1) is continuous and single valued. 

Next, we obtain the inner solution that matches the outer solution. We let 
Yl = (xl - 11ot)/c and Y2 ---- X2/e, and we define the rescaled time variable s = tie. 
We then seek a solution of the form 

~1 = e i~°yl/t e i~2s/2E ( f~(s ,  Yl, Y2) 
\g,(s,  y , ,  y2) J 

that matches the outer solution (4.1). To leading order in the small e limit, one 
finds that the solution has the form 

( 2 Dp_ 1((--  1 + i )qol /2(qoS + Y l ) )  
~k = e '"oyl/" ei"~s/2"Kt(y~, Y2) 11o (4.2) 

Dp((  -- 1 + i)11ol/2(11o S -~- YO) 

where Dq is the parabolic cylinder function [33] of order q, p = iy2/211o, and 

. 2  . 2 2 2 2 Kc(yl, Y2) = g -  1/2•- 1 e-- iy2/2~lO e -,y2 log(Eqo)/4r/o et0Og e)y2]2~lO e -  ;xy2/St/o e-(Yl + Y2)/2. 

The approximate inner solution (4.2) agrees with an exact solution up to o(1) 
errors for times t that satisfy It[ < E~" for ~ ' >  2/3. If  we choose 6 sufficiently 
small, this interval overlaps the interval of validity for the outer solution for 
negative times. The matching is consequently justified. 

We next match the inner solution (4.2) to positive time outer solutions. The 
piece of the wave function that ends up on the E~ surface is the simpler of the 
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two, because it is a Gaussian to leading order. If we set d = (1 + n/r/o) i/2, then 
to leading order, this component is 

d-I/2F ( "Ix -- aS(t)1~ -el_--g ,] eiS~(')/'2Cko(Aa~(t ), B~(t), e z, aal(t), q~(t), x)Oa(x), (4.3) 

where 

aS(t) 

~ " ( 0  

Sa(t) 

AN(t) 

B~(t)  

A~2(t) 

= (  r/°t + t2/2) ' 0  

= tlEt/2 + ~/o t2 + t3/3, 

= 1 + it, 

=1,  

A~2(t) 

= A~(t)  = B~(t)  = B~l(t) = O, 

/logltl ( 1 )  
=d-l+ q---~--+ i d - ~ o  d t'~ 

id 3 ) t21°gltl ~o  2 ~ d  2tl~ d t- t 2 q- O(t 3) 

and 

-- t/o-------- ~ + d -  r / 2 ~  + ~00 + t + O(t2). 

The probability of finding the system propagating on the E~ surface is thus 

+ re -1/2 .,=(l 
The E~ component is more complicated. The asymptotics of the parabolic 

cylinder functions [33] contain terms that involve the following function: 

(1 - i)y2 (2re) a:2 e-"Y'~/4"o. 
G(y2) = 2r/oI/2 

By using the asymptotics of the gamma, digamma, and polygamma functions 
[34], one can prove that the odd function G(y2)e -y~/2 belongs to the class of 
Schwartz functions. From this it follows [31, 35] that G has a convergent 
expansion in odd order Hermite polynomials 

G(y2) = ~. c:2-:/2(j!) -1/2/'/j(Y2), 
j= l  

with coefficients c s that decay faster than any inverse power of j .  
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We let kj denote the multi-index k s = (0,j). Then the E~, component of the 
outer solution for positive times is, to leading order, 

~l~-~ ~ cjqbkj(A ~'(e, t),B~C(E, t), e 2, a~C(t), tl~(t), x)~t(x) ,  
j = l  

(4.4) 

where 

and 

a~' ( t )=Cl° t - t2 /2)  ' 0  

q~c( t )=Cl°tot) ,  

S~(t) = ~2t/2 - t/0 t2 + t3/3, 

( A ~ ( t ) = l + i t  l+tlo/  

2i 
B ~ ( t )  = 1 + - - ,  

qo 
A ~ ( t )  = A g ( t )  = B g ( t )  = B g ( t )  = O, 

t log t + (i 
A M ( E , t ) = I +  r/o \ 

- 

1 log(2r/o) f- 2 log e]'~ t + - -  
r/o qo r/o / 

log(2r/o) 2 log e'X 
2t12 +--~q~ ) t2 + O(t3) 

t 2 log t 
2t/2 

i log t ilog(2qo) 2 i loge  it loglt] 
BM(e, t )=  + 1 + 

t/o r/o t/0 q0 z 

1 -~ 5i ilog(2qo ) 2 i loge~ 
+ -~o 2rl 2 rl 2 +---~o ) t +O(t2). 

Remark 1. The e-dependence of AM(e, t) and BM(e, t) makes (4.4) different from 
the usual Born-Oppenheimer states. For positive t, the position and momentum 
uncertainties in (4.4) are proportional to e log e rather than e. 

Remark 2. It is not much more difficult to propagate an initial state of q~k rather 
than q~0. The analysis is essentially the same, although the probabilities of ending 
up on the two surfaces are very different. By superposition of these states, one 
can send in a fairly general nuclear wave function. 

Remark 3. Because of the presence of the cut off function F, none of the 
functions (4.1), (4.3), and (4.4) that involve the discontinuous electronic eigen- 
functions is non-zero near the cut on the x2 axis. Thus our approximate solutions 
are all single valued and continuous. 
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5. Codimension 3 crossings 

The analysis of  solutions to Eq. (1.6) is very similar to that for Eq. (1.4). We will 
consequently only present the results of  the calculations in this section. 

For -qo  ~ t ~< - c  < 0 we choose the initial approximate solution to be 

F ( I  x -a~'(t) l~ j e'S~'(°/'2Cko(A~(t), B~'(t), e 2, a~(t), rl~(t), x ) ~ ( x ) ,  (5.1) 

where F is cut off as in Sect. 4, and 

(q° t+ t2 /2 )  
ad(t) = 0 , 

0 t) 
q~(t) = 

S~(t) = qgt/2 + qot: + t3/3, 

A~l(t) = 1 + it, 

8 f l ( t )  = l ,  

A~(t)=A~(t)=l+tl°gltl+~lo i--~o t-~ 2q 2 + 2~/o 2~ 2 t2+O(t3), 

B~(t) = B~( t )=  i logl/I ~_qo 1 it logltlno ~ ~- (qol + ~5i ) t + O(t2), 

and the off-diagonal entries of A ~' and B ~' are all 0. 
The approximate inner solution that matches (5.1) is 

. 2  
~1 = ein°Y3/" e"°~/Z'K~(Yl, Y2, Y3) 

( .1 - i ) (y1+iY2)D "" 1 f 1/2, s " " \  
2---~2------ p - l ( ( - -  + )r/o I,r]0 -I-Y3))} 

× D p ( ( - 1  + i)?lol/2(?loS -I-Y3)) / ,  (5.2) 

where s = t/e, Yl = Xl/e, Y2 = X2/E, Y3 = (x3 - q0t)/c, p = i (y 2 + yE)/2qo, and 
. 2  . 2 2 

gc(Yl ,  Y2, Y3) = ~z - 3/4¢: -3/2 e -,y3/2~o e -'(Y~ +y2)l°g(Eq°)/4tl° 

X e i( l°g O(yl2 + Y2)/2r/o e 2 2 2 2 2 -- n(y l  + Y2)/870 e - ( y l  + y 2  +y3) /2  

The inner solution (5.2) matches an outer solution for positive times that is 
a sum of two components. If we set d = (1 + ~ / ~ 0 )  1/2 a s  in Sect. 4, then to 
leading order, the E~ component is 

d - i F  ( Ix --El~a~'(t)rX//e is~(t)/t 2-(pO 1. ,,:1 , -  a~,-,(t),Bal(t),E2, aa~(t), r/a(t), x ) ~  (x), (5.3) 
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where 

aS(t) = 
.ot 

0 

//o t + t\ 

S~(t) =//~t/2 +//o t2 + t3/3, 

A~(t) = 1 + it, 

B~ (0 = l, 

tlog[tl ( 1 )  
A ~ ( t ) = A ~ ( t ) = d - l  + ~ o d  + id-~o  d t q 

+ ( ; d  o 2q~d) t2+O( t3) '  

? loglt[ 
2//~d 

= = i l o g l t l  i t  logl,I +(d 5, ) 
//od + d //~d ~o + 2--~od t + o(t2), 

and the off-diagonal entries of  A s and B ~ are all 0. The probability of  finding 
the system propagating on the E~ surface is thus 

d - 2 =  1 +  

The E~, component is more complicated. We set 

(1 - i)(yl + iy2) (2~z) 1/2 2 2 
e - r t(Yl + Y2) /4q° .  G(yl, Y2) - 2//1/2 (Yl Y2)~ F f  1 i 2.~_ 2 

-2~o / 
The function G has a convergent Hermite polynomial expansion 

G(yl, YE) = ~ cj,12-<J + O/2(fi) - 1 / 2 ( l [ )  - l/2Hy (yl)Ht(y2), 
j , l=  1 

with coefficients cj, t that decay faster than any inverse power o f j  + l. 
We let kj, l denote the multi-index k:s = (j, l, 0). Then the E~, component of 

the outer solution for positive times is, to leading order, 

F ( ix - a~'(t) r] e-T77_~ ] eiS:'~t)/'2~ ~ (x) 

× ~ cjadpk:,x(A~(e, t), B~(E, t), ¢2, a~(t),//~(t), x) e i*~x), (5.4) 
j , l=  1 
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where cp(x) is the azimuthal spherical coordinate for x, 

rlot - tz/2) 
a~(t) = 0 , 

0 

q~c(t) = 

S~(t) = rl2t/2 - qo t2 + t3/3, 

A~(t)  = 1 + i t ( l  + 2 i ) ,  
r/o/ 

2i 
= 1 + - ,  

qo 

A~(e, t) = A~(£, t) = 1 + t log t + (  i 
r/o \ 

- -~ 2q2 

B2~(E, t) = B~3(E, t) = 
i log t i log(D/o) 

+ 1 +  
qo qo 

1 log(D/o) + 2 log c~ t 2 log t 
t + - -  

qo qo t/o ,/ 2t/2 

log(2r/o ) 21og*~ 2 
2q~ ~ - - ~  ) t + O(t3), 

2i log E it loglt I 
,70 ,7o 

1 -} 5i ilog(2qo) 2 i loge~  

+ - q o  2rt 2 r/o z + - - ~ o 2  ,] 

and the off-diagonal entries of  A ~' and B ~' are all 0. 

t + O(t2), 

Appendix 

In this appendix we provide some further details for the codimension 1 and 2 
examples. Rigorous mathematical proofs follow the outlines we present, but 
require numerous estimates of  norms of  error terms. The codimension 3 case is 
very similar to the codimension 2 case, so we will not discuss it here. 

All our results rely on the following lemma that is a simple variant of  Lemma 
2.1 of [2]. In our applications, the variable r of the lemma is a rescaled time 
r = E -bt for some b ~> 0, and typically a = 2 - b. 

Lemma A1. Suppose H(e) is a family of  self-adjoint operators for e > O. Suppose 
~(r, e) belongs to the domain of  H(e), is continuously differentiable in r, and 
approximately solves the Schr6dinger equation in the sense that 

ie~ ~r (r, e) = H(e)~b(r, e) + ((r, E), (A.1) 
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where ((r, e) satisfies 

lie(r, ~)II ~</t(r, e )  

for  TI (e) <~ r <<. T2(e). Suppose ~e(r, e) is the exact solution to equation 

iea ~r  (r, e) = H(e)~P(r, e) (A.2) 

with initial condition ~g(ro, e) = •(ro, E), with Tl (e) <<. ro <<. T2(e). 
Then, for  Tl(e) ~< t ~< T2(E), the following estimate holds: 

I 
r2(c) 

II ~P(r, e) - ~b(r, e)II <. ~-a  #(r, e) dr. (A.3) 
tiT1 (E) 

Proof. By the unitarity of the propagator e -irH(°/" for Eq. (A.2) and the 
fundamental theorem of  calculus, the quantity on the left-hand side of  (A.3) can 
be estimated as follows: 

li e - ' ~ ' - ' o ~ " ' ) i ~ ° ¢ ( r o ,  ~) - ~(r, ~)II 

= IlO(ro, ~) - el("- "°)H(Ol':~s( r, e)II 

~ " 0 O) ds = N (O(ro ,  E) - e i(` -r°)m') l '"¢/(s ,  
o 

fr( ) = --ie-a ei (S-ro)H(O/eaH(S,  £)~1(S, E) - -  e i (s-r°)H(O/ 'a  (S, 0 ds 
o 

r 

= ie -"  e i@- ro)H(')l'a((S, £) 
o 

I 
T2(c) 

<<. E-" #(r, c) dr. 
dTl(e) 

This proves the lemma. [] 

A I. Sketch o f  the proof  for  the codimension 1 case 

To justify the claims in Sect. 3, we begin by proving that expression (3.1) agrees 
with an exact solution to Eq. (1.2) up to an error that is O(E 2-r )  for 
- 1 ~< t ~< - CE ~, for appropriate choices of ~. To do this, we first note that 
modulo O(c n) errors for any n, expression (3.1) is equal to 

F ( IX --71- ~-a#(t) r~ is~'<ot,2- "- ~"-" 7 e qgota it), B ~¢, e 2, a~(t),  rl~'(t), x ) ~ ( x ) ,  (A.4) 

where 0 < 6 < 1 - ?, and F is a smooth cut-off function that takes the value 1 
when its argument is less than 1 and takes the value 0 when its argument is 
greater than 2. The error here is of  infinite order because of  the rapid fall off 
of  ~bo. 

Next, we add parts of  the second and third order correction terms to (A.4). 
These additions are required for the proof  because we are analyzing a singular 
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perturbation problem. If  one tries to work with (A.4) without the additions, the 
analysis breaks down. Intuitively, this break down is due to small amplitude, 
high frequency oscillations in the solution if one uses (A.4) at some given time 
as the initial condition. Because the frequency is high, the time derivative is large, 
even though the amplitude of the oscillations is small. The addition of the 
correction terms to the initial conditions yields a solution that does not have the 
high frequency oscillations. We can obtain a good enough estimate on its time 
derivative to use Lemma A. 1 to prove that our approximate solution stays near 
an exact solution. 

These correction terms are given by Eqs. (3.6) and (3.11) of [10] (for our 
special example, $1 = 0, so the formulas are not so complicated). On the time 
interval - 1  ~< t ~< -CE r, we make an O(E 2-r) error by replacing (A.4) by 

F ([ x -- a~ ( t) l) ~ __~ 

x I~bo(A~'(t), B~C(t), E z, a~(t), q~'(t), x)~d(x  ) 

- E  2 irl~(t) ~bo(A~C(t), B~'(t), e 2, a~(t), r/~(t), x)~s(x)  
x 

+ e3 xl AB~(t)~'(t) x - a~'(t)e (k°(A ~(t)' B~'(t)' ez' a~t(t)' t/~c(t)' x)@al(x) 1" (A.5) 

To facilitate the calculations with this expression, we use the multiple scales 
notation of [ 10] to rewrite it as 

F(ErIyl) e 's~(,)/': ei"~c(t)Y/~[~lo(X, y, t) -t- £2~(X,  y, t) + e3~k~-(X, y, t)], 

where y = (x - a~(t))lE, 

~/0(x, y, t) = E- 1/2~b0(A ~'(t), B~(t), 1, O, O, y)c~(x) .  

d/~(x, y, t) = - -  --#t~(t) 
E- '12~0(A ~'(t), B~'(t), 1, O, O, y ) ~ ( x ) ,  

and 

0 ~ ( x , y , t )  l S # ( t )  _ x A---~ yE 1/2cp°(A~'(t)' B~C(t)' 1, 0, 0, y)@~(x). 

By explicit calculation, expression (A.5) approximately solves Eq. (1.2) in the 
sense of Lemma A1 with a = 2 and remainder ((E, x, y, t). Some of the terms in 
this remainder contain derivatives of F. Their norms are smaller than any power 
of E because 6 > 0 and ~bo falls off exponentially in y. The other terms in the 
remainder have finite order norms. They are 
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r(~Olyl) e is~(t)/E2 ei.~'~,)y/, 

× -iO"~" ~x O~(x, y, 0 - E',7 # ~ O~(x, y, 0 

02 0 2 
- c ~ -  ~ , ~ ( x ,  y ,  0 - E ~ - -  ~,~ (x,  y ,  0 

ax 8y Ox ~y 

£4 02 E6 02 E7 02 "] 
2 O x 2 d / ° ( x ' y ' t ) - - 2 t ~ x  - - - 5 ~ ( x ' y ' t )  - - -  ~ O ~ ( x , y , t )  J 2 0 x  2 

We estimate the norms of  each of these seven terms, making use of  the 
relationship 0 < 6 < 1 - 7. The norms of the seven terms (in the order presented 
above) are O(e4]tl-2), O(e~]t]-2), O(ESit]-2), O(e6it]-2), O(e4), O(e6it]-3),  and 
O(~71t8-3). We integrate these estimates up to time t = - C e  ~. For  y close to 1, 
the integral that has lowest order is the first one. It is of order e 4-~. Thus, by the 
lemma, expression (A.5) agrees with an exact solution of Eq. (1.2) up to an 
O(e 2-~) error for - 1  <~t < ~ - C C .  Since (A.4) agrees with (A.5) to the same 
order, (A.4) also agrees with an exact solution of  Eq. (1.2) up to an O(E z - 7 )  
error for - 1 ~< t ~< - Ce ~. This establishes all the claims of Sect. 3 for the outer 
solution for negative times. 

For  the inner solution, we defined the rescaled variables s = t/e, and 
y ~  = (x  - a ~ ) / e .  For  convenience, we also set y ~  = (x  -- a ~ ) / e  = y ~  - es2/2. We 
make the ansatz that the inner solution has the form (3.3), and substitute 
expression (3.3) into Eq. (3.2). In the resulting equation, we expand all depen- 
dence on E that is analytic in e in its Taylor series. After some cancellations, the 
lowest order terms that occur in the resulting equation are of order EVo(e). These 
lowest order terms require 

e',~s/2~ e',oy~,/~ i ~ ,(a~ '(O))  

+ i e in2os/2¢ e iq°s2 e iq°y~t/e eisy~, e ~i~os2/2 Ogo 
~s ~(a~ ' (O) )  

= 0 .  

Because of  the orthogonality of  the wave functions ~,(a~'(O))  and q)~(a~(O)), 
the two terms on the left hand side of  this equation must each vanish. This can 
only happen if 

of  0 0 
Os 

and 

Ogo - - = 0 o  
Os 

Thus, fo and go have trivial s dependence, but may have non-trivial spatial 
dependence. The spatial dependence is determined by formally matching the 
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inner solution to the incoming outer solution to lowest order. This forces 
Vo(e) = 1, 

f o  = £ - 1/2~bo(A ~ ( 0 ) ,  B ~ ¢ ( 0 ) ,  1, 0, 0, Y~t) 

and 

g0--O. 

We now consider the next higher order terms. If lim~_.0 v~ (c)/E = ~ ,  then by 
an analysis similar to that for the leading order terms, we find that 

8fl = 0  and @l = o .  

Matching to the outer solution forces f~ and g~ to be identically O. If 
lim~_0v~(E)/e =0 ,  then we obtain equations that cannot be solved. So, we 
conclude that we should choose Vl (e) = e. With this choice, the next order terms 
in the perturbation expansion require 

i e i~s/2~ e i"°y~/~ all ~¢(a~¢(0) ) 
Os 

+ i e i~l~s/2" e i"°s2 e i~°y~/¢ e isy-~/E e --itloS2/2 8g--!1 q~(a~(O)) 
8s 

= - iqo e i"~/2" e i"°y#/'fo ~ (a~'(0)) 

- -  itlo e i"~s/2¢ e i"°s2 e i n ° y ~  /" e isy~t e - i " o s 2 / 2 g  0 ~ (a~¢(0)) 

: 02fo __ 1 DirloS/2, e i n o y ~ / ,  ~¢(a~,(0)) 

2 1 oitloS/2C eitloS2 eit loy~/e etSy~ e-i~los2/2 ~2gO dy~ ~(a~ ' (0))"  

We split this into two equations by separately studying the components that are 
multiples of the two orthogonal electronic states ~ , ( a~ (0 ) )  and ~(a~ ' (0 ) ) .  
After a little algebra, the multiples of ~d(a~'(0)) require 

of  1 i OYo 
t3s 2 8y 2" 

The multiples of 4i~(a~'(0)) require 

~g l  • " - -  = -r/o e-,~o~2/2 e-'~Y~fo(s, y~).  
8s 

These two equations are easy to solve explicitly for the solutions that match the 
outer solution. The results are 

is a2fo 
f ,  = ~ Oy2 
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and 

f gl = -- qofo (s, y ~ )  e - -  iqos'2/2 e - i~'y~, ds" 
oo 

I 
s + y ~  /qO 

= -qo fo ( s ,  Y ~ )  e-,~or2/2 dr. (A.6) 
j - - o o  

To prove the accuracy of the approximate inner solution, we simply apply 
Lemma A1 with a = 1. When we substitute our approximate solution into Eq. 
(3.2), the largest term in the remainder term ((s, e) is due to the Taylor series 
errors. It's norm is bounded by/~(s, e) = Eas 3. So, from the conclusion to Lemma 
A1, our approximate inner solution agrees with an exact solution to (3.2) up to 
an error that is bounded by a constant times eEs 4. I f  we keep Itl < e ~', then 
[s]<er'  1, so the error is O(6  47" -- 2). Since we are only doing a first order 
calculation, this is acceptable as long as we take ? ' >  3/4. 

When - 6  r" < t < - 6  ~ with 3/4 < ? '  < 7 < 1, the inner and outer approximate 
solutions agree with one another up to o(6) errors. This is proved by subtracting 
one wave function from the other, and estimating the norm of the resulting 
expression by standard integration and Taylor series estimates. 

The positive time outer approximate solution is generated in the same way as 
the negative time outer approximate solution. However, the particular solution 
must be chosen to match the inner solution. To do this matching, we must study 
the large s asymptotics of the inner solution. This is trivial, except for the integral 
term in (A.6). By integrating by parts, 

I s + y~/~o i 
e--iqor2/2 dr ~ (1 -- i)lz 1/2/1 --1/2 - -  _ _  e-i(y~ + r/os)2/Er/0 

j -  oo y~, + qoS 

With this asymptotic information, we obtain the positive time analog to (A.5). 
The first order outer solution with parts of the second and third order terms 
included is 

x ]q~o(A~'(t), B~C(t), e 2, a~'(t), q~t(t), x ) ~ c ( x )  

- 62 iq~( t )  qbo(A~C(t), B~t(t), e 2, a~t(t), q~c(t), x ) ~ ( x )  
x 

- ~  63 xl AB~C(t)~c(t) x -- ad(t)6 c~°(A~'(t)' B~( t ) '  62, a~( t ) '  qg( t ) ,  x ) ~ ( x ) ]  

+ 6( -- 1 + i)n '/2q~/2F - ( -Ix 
aS(t)  

-e I = ~ ] eiS~(')/~ 
% 

X) CT2) ot ( X ) 

_ 62 it/~(t) $o (A a(t), B~(t), 62, a ~(t), q ~(t), x)#~¢ (x)-]. (A.7) 
x A 
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This expression agrees with the inner solution up to o(E) errors in the positive 
time matching region E ~ < t < E r'. Also, by another application of Lemma A1 
with a = 2, (A.7) agrees with an exact solution to equation (1.2) up to an 
O(E 2-r)  error for t > C. Finally, (A.7) is equal to (3.4) up to an O(E z-r)  error 
for t > c~. 

This completes the outline of  the proof  of  our results for the codimension 1 
example of  Sect. 3. 

A2. Sketch of  the proof for the codimension 2 case 

The basic ideas for proving our codimension 2 results are the same as those for 
the proof  of  the codimension 1 results. However, the codimension 2 case is more 
difficult because the electronic eigenvalues are not differentiable at the crossing, 
and the electronic eigenvectors are not even continuous near the crossing. 

We begin by proving that the negative time outer solution (4.1) agrees with 
an exact solution to (1.4) up to an error that is O(E ~ -~) for - 1  ~< t ~< - C C  for 
appropriate choices of ~. To do this, we first add part of  the second order 
correction term to (4.1). This term is given by Eq. (3.6) of [10]. For  
- 1  ~< t ~< --CE ~, we make an O(e 2-2~) error by replacing (4.1) by 

F (  'x - a~ ( t) D l -~  

× [(bo(A~(t), B~C(t), E 2, a~C(t), r/~c(t), x)~c(x)  

+ E 2 iltl~(t)lx2 a~'(t), ~/~'(t), x ) ~ ( x ) l  (A.8) 2lxp 4~o(A~'(t), B~'(t), E 2, 

As in the codimension 1 case, calculations with this expression are facilitated 
by using the notation of  [10]. In this notation, (A.8) is expressed as 

F( 'lzl) e is~'(o/'2 e"~'(oz/'[~o(x, z, t) + E=~ ~(x, z, t)], 

where z = (x - a~(t))/E, 

~ko(X, z, t) = e-'C~o(A~(t), B~C(t), 1, O, O, z)~ ~(x), 

and 

i 
~ ~(x, z, t) = ~[x] E-ldPo(A~t(t), B~C(t), 1, O, O, z)q ~t " V x ~ ( x ) .  

By explicit calculation, (A.8) approximately solves (1.4) in the sense of 
Lemma AI, with a = 2 and remainder ~(E, x, z, t). As in the codimension 1 case, 
the terms in the remainder that contain derivatives of F are of infinite order. 
Twelve terms of finite order contribute to ~(E, x, z, t). They are 
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E- I F(E°lzl) e 'sd~O/~2 e in~'tO " ~/~ 

S - ~  1__ ~) ° ~ '  . v ~ ( x )  × ( 21xl dpo(A~C(t), B~C(t), 1, O, O, 

EaC~o(A~'(t), B'~(t), 1, O, O, z) (rl a'" V~ l--~-] 21xl/ (n~' " v~,(x))  
1 ~, 

-- E4~bo(A~c(t), B~(t), 1, O, O, z) ~ q " Vx(q ~ " Vx~c(x))  

+ [E~c(a ~ + Ez) - ff~t(a ~¢, Ez)]qbo(A~t(t), B~t(t), 1, O, O, z )~ t (x )  

- iEZ[E~,(a ~' + Ez) -- E~,(a ~¢, Ez)]Cko(A~'(t), B~C(t), 1, O, O, z) ~ rl ~ .  Vx~c(x)  

- E3Vz~o(A~c(t), B~t(t), 1, O, O, z) • Vxq~(x)  

+i£5(V~q~o(A~(t),B~t(t), 1, 0,0, z ) " V ~ 2 ~ l ) q ~ "  V ~ t ( x )  

1 
+ iE 5 ~ Vzq~o(A~(t), B~t(t), 1, O, O, z)" Vx(q ~t" V ~ , ( x ) )  

E 4 

-- ~ qbo(A~C(t), B~t(t), 1, O, O, z ) A ~ ( x )  

('6 ( 1 ) ~ ,  
+ i-ff 4)o(A~'(O. B~'(O. 1. O. O, z) A.~lxl ,1 • Vxe~,(x) 

+ i~6c~o(A~(t),B~'(t), l,O, O,z) (V~---~l)" V~(q~c" V ~ t ( x ) )  

(6 1 } 
+ i-~ qbo(A~(t), B~(t), 1, O, O, z) 2 ~  I A~O1 ~" V x ~ ( x ) )  , 

where E~(a~,('z) is the second order Taylor series approximation to 
E ~ ( a ~ +  ('z) in the variable ez. 

We estimate the norms of each of  these terms, making use of the relationship 
0 < 6 < 1 - 7 .  They are (in the order presented above) o(("lt[-3), o(('~ltl-4), 
o(('tltl-5+('Sltl-4), 0(('31/I-2), 0(('61/I-5), o(('31tl-'logltl), o(Esltl-310g]t]), 
o(('~lt1-3 loglt]), o(("ltl-=), o(('~lt]-~), O(('71/1-5), and O(e6ltl-a). We integrate 
these estimates up to time t = - C  eL For ? close to 1, the integral that has 
smallest order is fourth one. It is of order ('3- ~. Thus, by Lemma A1, expression 
(A.8) agrees with an exact solution (1.4) up to an O((' l - r )  error for 
- 1  ~< t ~< -C( '  r. Since (4.1) agrees with (A.8) to order ('2-2v, (4.1) also agrees 
with an exact solution to (1.4) up to an O(c ~ -v) error for - 1  ~< t ~< - C ~ L  This 
proves the claims of  Sect. 4 for the negative time outer solution. 

For the inner solution we define rescaled variables s = t/(', y~ = (xl - qoO/E, 
and Y2 = x2/c, and make the ansatz that the inner solution has the form 

,n2 /2~ {f,(s, y, ,  Y2) 
~l = e i~°y~/" e ~g,(s, yl,  Y2))" (A.9) 
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When we substitute this into (1.4), we find that f and g must satisfy 

i ~ ( g f ) :  -- E--" /1 ( f ~  "{-(I~/0S "I-Yl Y2 ~ ( f ~  (A.1O) 
2 Ykg] \ Y2 - % s - Y l l \ g /  

If  f and g have asymptotic expansions for small e, then the leading terms must 
satisfy 

i ~_~_ I f0 )  __ (I~0S "l- Yl .122 ~(f0~ 
~S go \ Y2 -%s--Yigkgo]" 

The solutions to this equations can be written explicitly in terms of  parabolic 
cylinder functions. They are 

, /  zt/0 / 
D'-'((- l + " ' /  

\go(s, yi, Y2) ] = K~(YI' Y2) t D p ( ( -  1 + i)tloi/2(%s + y,)), ] 

where Ke(yl,Y2) is arbitrary and p = iy2/2%. To determine Ke(yl,Y2) w e  

formally match the inner solution to the negative time outer solution for small t 
but large s. By using the asymptotics of the parabolic cylinder functions [33], we 
find that 

e -,yt/2~o e --iy2 l°g(2r/0)/4r/0 e ~(l°g Oy2/2r/° e -  ~Y2/8r/0 e -tyl y2,/ . KE(Yl,Y2) =7[_1/2E_1 .2 2 . 2 2 , 2+ 2,, 2 

With this choice of K,(yi, Y2), we must prove that the inner solution (A.9) 
agrees with an exact solution to (A. 10) up to a tolerable error on a time interval 
that intersects the interval of validity of  the outer solution. We do this by 
applying Lemma A1 with a = 0. When we substitute (A.9) into (A.10), the two 
sides of  the equation agree up to a remainder 

/fo Y2) 
¢(', S, Yl, Y2) = --'2 Ayl ~'(S' 

Yl, 

\go(  s, Yl ,  Y2) ]" 

We calculate this Laplacian explicitly, and find that its norm (integrated with 
respect to dx) is bounded by a constant times £s 2. The most rapid growth in s 
comes from the second derivatives of the parabolic cylinder functions; the 
growth in y does not cause trouble because of  the exponential decay in the 
function KE(yi, Y2). If  It[ < e ~', then Isl < e ~'- 1, and for s in this interval, Lemma 
A1 shows that the approximate inner solution agrees with an exact solution up 
to an error of  order 

Ef g -- 1 c s 2 ds = 0(E3~'-2). 
£~'-- I 

This error is tolerable as long as ) , '>  2/3. 
If  we choose 2/3 < ~' < y < 1, then the negative time outer solution and the 

inner solution are both valid for -CE~'<t < - C C .  Furthermore, the two 
solutions agree with one another in this interval up to o(1) errors, and the 
matching is justified. 

For  the positive time outer solution, we mimic  the analysis of  the negative 
time outer solution. The positive time outer solution is given by expressions (4.3) 
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and (4.4). The particular form of these expressions is chosen to match the 
asymptotics [33] of the parabolic cylinder functions when s is large, but t is 
small. Because of the rapid fall off of the cj in (4.4), we can estimate the errors 
for each terms of  (4.4) individually, with estimates that grow polynomially in j. 
The process of estimation of the errors is essentially identical to that used for the 
negative time outer solution, wo we do not describe the details here. 
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